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• Trusted execution environment (TEE) is a physically isolated execution 
environment for securing sensitive computations.
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• Because TEE is physically isolated environment, it guarantees the 
integrity and confidentiality of executed programs and their data.
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• Because TEE is physically isolated environment, it guarantees the 
integrity and confidentiality of executed programs and their data.

• This is why TEE is widely used in security-critical systems, such as 
industrial control systems, servers, mobile security, IoT, etc.
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• Formal analysis framework for TEE applications is not well-developed.

Motivations
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• Formal analysis framework for TEE applications is not well-developed.

• Formal models for TEE and its APIs, which can be utilized for a variety 
of formal analysis techniques, are lacking.

Motivations
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Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be 
used in various formal analysis. 

• We specify two widely used TEE API categories, Trusted Storage API 
and Cryptographic Operations API. 

• We demonstrate the effectiveness of our model through a case study 
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.
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• Our target is the standard TEE APIs, provided by Global Platform.

- Many Trusted OSes follow this standard.

- e.g., Samsung TEEgris, Trustonic Kinibi, Qualcomm QTEE, etc.

Our Target TEE APIs
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• We focus on Trusted Storage API and Cryptographic Operations API.

Our Target TEE APIs

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

Manges files and keys in trusted storage Handles cryptographic algorithms 

• We choose these APIs because:
- They are widely and frequently used in various TEE applications;
- They provide essential functions for TEE’s integrity.
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Characteristics of the TEE APIs

23



• (1) Many API functions interact with multiple objects, and we need to 
consider their concurrent behaviors.
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• (2) Some objects have complex internal state transitions.
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• (2) Some objects have complex internal state transitions.

• E.g., A symmetric cipher operation object has complex state transitions.
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• Maude is a language and tool for formally specifying and analyzing 
concurrent systems, based on rewriting logic formalism.

What is Maude?
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• Maude is a language and tool for formally specifying and analyzing 
concurrent systems, based on rewriting logic formalism.

- It supports object-oriented specification.

- It defines concurrent behaviors using rewrite rules.

• Because of the powerful formalism of Maude, it is widely used in 
various formal analysis domains such as:

- defining language semantics,

- inductive theorem proving, 

- model checking, etc.

What is Maude?
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Formal Specification using Maude
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• In Maude, we declare a class using the syntax:

Formal Specification using Maude

Class name

Attributes and their types

class C | att1 : Ty1 , ..., attn : Tyn
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• In Maude, we declare class instances using the syntax:

• The behavior of a class is defined using rewrite rules:

Formal Specification using Maude
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• E.g.) In TEE, a file is called a persistent object having: 

• (1) a file name; and

• (2) a data stream.
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• E.g.) In TEE, a file is called a persistent object having: 

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.
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An example: TEE_CreatePersistentObject
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• This function creates a new persistent object.

An example: TEE_CreatePersistentObject
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• This function creates a new persistent object.

- Argument 1 : Filename

- Argument 2 : Access flags (e.g., overwrite)

- Argument 3 : Data

- ...

An example: TEE_CreatePersistentObject
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- ...
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• According to the TEE API document, when a file with the same name 
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

59



• According to the TEE API document, when a file with the same name 
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

60



• According to the TEE API document, when a file with the same name 
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

61



• According to the TEE API document, when a file with the same name 
already exists, the behavior of the function is as follows:

- Overwrite flag given : 

Delete the old file and create a new one

An example: TEE_CreatePersistentObject
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• According to the TEE API document, when a file with the same name 
already exists, the behavior of the function is as follows:

- Overwrite flag given : 

Delete the old file and create a new one

- Overwrite flag not given : 

Return error

An example: TEE_CreatePersistentObject
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An example: TEE_CreatePersistentObject
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• (1) A trusted application (TA) requests a trusted storage to create a file.
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• (1) A trusted application (TA) requests a trusted storage to create a file.

• Trusted application has the following things:

- the status of an API call,

- an identifier of a trusted storage,

- ...
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• (1) A trusted application (TA) requests a trusted storage to create a file.
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< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
   (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .



• (1) A trusted application (TA) requests a trusted storage to create a file.
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• (1) A trusted application (TA) requests a trusted storage to create a file.
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• (1) A trusted application (TA) requests a trusted storage to create a file.
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< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
   (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .

TA

Make a file creation request message and send it to its trusted storage

An example: TEE_CreatePersistentObject



• (2)-1. The storage deletes the old file if an overwrite flag is given.
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• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.
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• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

• Trusted storage has the following things:

- a list of stored files, 

- a counter for object creation,

- ...
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• (2)-1. The storage deletes the old file if an overwrite flag is given.
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class Storage | files : Set{FileName}, counter : Nat, ...

An example: TEE_CreatePersistentObject



• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.
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(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

An example: TEE_CreatePersistentObject
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then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation 
request message

Trusted 
storage

Determine if overwrite flag is given

An example: TEE_CreatePersistentObject



• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted 
Storage

1: create

2: fail
2: delete
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crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation 
request message

Trusted 
storage

Determine if overwrite flag is given
Sends a file deletion request message to the old file

An example: TEE_CreatePersistentObject



• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
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Trusted 
Storage

1: create

2: fail
2: delete
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crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation 
request message

Trusted 
storage

If no overwrite flag is given

An example: TEE_CreatePersistentObject



• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted 
Storage

1: create

2: fail
2: delete
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crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation 
request message

Trusted 
storage

If no overwrite flag is givenSends a failure message

An example: TEE_CreatePersistentObject



• We specify all API functions of the Trusted Storage API and 
Cryptographic Operations API.

Formal Specification of TEE APIs
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• We specify all API functions of the Trusted Storage API and 
Cryptographic Operations API.

Formal Specification of TEE APIs

TEE_CreatePersistentObject
TEE_OpenPersistentObject
TEE_RenamePersistentObject
TEE_CloseAndDeletePersistentObject1
TEE_ReadObjectData
TEE_WriteObjectData
…
TEE_CopyObjectAttributes1
TEE_PopulateTransientObject
…

Trusted Storage API (27/27)
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• We specify all API functions of the Trusted Storage API and 
Cryptographic Operations API.

Formal Specification of TEE APIs

TEE_CreatePersistentObject
TEE_OpenPersistentObject
TEE_RenamePersistentObject
TEE_CloseAndDeletePersistentObject1
TEE_ReadObjectData
TEE_WriteObjectData
…
TEE_CopyObjectAttributes1
TEE_PopulateTransientObject
…

Trusted Storage API (27/27)

TEE_AllocateOperation
TEE_ResetOperation
TEE_SetOperationKey
TEE_CopyOperation
TEE_FreeOperation
TEE_DigestUpdate
…
TEE_MACInit
TEE_MACUpdate
…

Crytographic Operations API (30/30)
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• Our formal model consists of more than 15 objects, and 245 rules.

Formal Specification of TEE APIs
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Case Study
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Demonstrate the effectiveness of our formal model by using it 
to formally analyze a real-world TEE application. 

Goal



Case Study
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Demonstrate the effectiveness of our formal model by using it 
to formally analyze a real-world TEE application. 

Goal

• We define the language semantics for TEE applications in Maude.
• We extend our model to run TEE applications using this semantics.

Settings



• As our target TEE application, we choose MQT-TZ [Segarra+20].

Our Target TEE Application
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• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message 
transport protocol.

Our Target TEE Application
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Our formal model

TEE Application



Threat Models
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• (1) Memory threat

- This threat makes brokers to run out of memory.

Threat Models
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• (1) Memory threat

- This threat makes brokers to run out of memory.

• (2) Message modification threat

- This threat modifies the sender of a message.

Threat Models
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• We define various requirements for MQT-TZ and express them as LTL 
properties.

Defining Requirements of MQT-TZ
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• We define various requirements for MQT-TZ and express them as LTL 
properties.

Defining Requirements of MQT-TZ
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Name Description LTL Formula

P1 If no memory error occurs in the broker, subscribers eventually 
receive messages.

¬𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵 →
(𝑠𝑒𝑛𝑑. 𝑃 → ♢𝑟𝑒𝑐𝑣. 𝑆)

P2 If the TA panics, subscribers should not receive any messages. (𝑝𝑎𝑛𝑖𝑐. 𝑇𝐴 → ¬𝑟𝑒𝑐𝑣. 𝑆)

P3 If any memory error occurs in the broker, subscribers should not 
receive any messages.

(𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵
→ ¬𝑟𝑒𝑐𝑣. 𝑆)

P4 When the TA starts running, it should eventually terminate. (𝑠𝑡𝑎𝑟𝑡. 𝑇𝐴 → 𝑡𝑒𝑟𝑚. 𝑇𝐴)

P5 If subscribers receive messages from publishers, messages sent 
from each publisher are in order.

(𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑃(𝑎 ∷ 𝑏 ∷ 𝑐)
→ ♢𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑆(𝑎 ∷ 𝑏 ∷ 𝑐)

P6 The number of tasks handled by the TA cannot exceed five. (¬𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐸𝑥𝑐𝑒𝑒𝑑(5))
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• We perform LTL model checking using Maude.
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• We consider three scenarios.

- NON : no threat 

- OOM : memory threat

- MSG : message modification threat
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- OOM : memory threat
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LTL Model Checking of MQT-TZ
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Maude generates counterexamples for violations



• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations
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• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations
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Even if the TA panicked, some subscriber receives a message.

If memory error occurred in TA, some subscriber still receives a message.



• The reason is that the broker program cannot distinguish the following 
three TA status:

- (1) successful termination, 

- (2) panic, 

- (3) out-of-memory.
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• The reason is that the broker program cannot distinguish the following 
three TA status:

- (1) successful termination, 

- (2) panic, 

- (3) out-of-memory.

Analyzing the Violations
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Consider as successful termination



• We propose a code-level patch for the broker program to distinguish 
two error states from successful termination.

Patching the Bug
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TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin, 
mqttz_client *dest, mqttz_times *times) 

{ ... 
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori); 

... 
}



• We propose a code-level patch for the broker program to distinguish 
two error states from successful termination.

Patching the Bug
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TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin, 
mqttz_client *dest, mqttz_times *times) 

{ ... 
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori); 
if (res == TEE_ERROR_OUT_OF_MEMORY || res == TEE_ERROR_TA_DEAD) 
{ discardMsg(ctx, origin, dest); }
... 

}



• We propose a code-level patch for the broker program to distinguish 
two error states from successful termination.

Patching the Bug
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TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin, 
mqttz_client *dest, mqttz_times *times) 

{ ... 
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori); 
if (res == TEE_ERROR_OUT_OF_MEMORY || res == TEE_ERROR_TA_DEAD) 
{ discardMsg(ctx, origin, dest); }
... 

}

Out-of-memory TA panicSuccessful termination



• After patching, we verify the program again.

Patching the Bug
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• After patching, we verify the program again.

Patching the Bug
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• After patching, we verify the program again.

Patching the Bug

We can confirm that the violated properties are satisfied.
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Summary

132

• We provide a comprehensive formal model for TEE APIs, that can be 
used in various formal analysis. 

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API. 

• We demonstrate the effectiveness of our model through a case study 
on formally analyzing a real-world TEE application, MQT-TZ.


