
Formal Specification of
Trusted Execution Environment APIs

Geunyeol Yu1 Seunghyun Chae1 Kyungmin Bae1 Sungkun Moon2

FASE2024

1

1 2

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

2

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

3

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

4

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

5

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

6

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

Rich applications (RAs)

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

7

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

Rich applications (RAs) Trusted applications (TAs)

• Trusted execution environment (TEE) is a physically isolated execution
environment for securing sensitive computations.

Trusted Execution Environment

8

Rich OS Trusted OS

Secure Monitor

Bio. auth.
Application

Operating System

Hardware

Rich Execution Environment Trusted Execution Environment

... ...

Rich applications (RAs) Trusted applications (TAs)

TEE API

APIs to implement trusted applications.

• Because TEE is physically isolated environment, it guarantees the
integrity and confidentiality of executed programs and their data.

Trusted Execution Environment

9

• Because TEE is physically isolated environment, it guarantees the
integrity and confidentiality of executed programs and their data.

• This is why TEE is widely used in security-critical systems, such as
industrial control systems, servers, mobile security, IoT, etc.

Trusted Execution Environment

10

• Formal analysis framework for TEE applications is not well-developed.

Motivations

11

• Formal analysis framework for TEE applications is not well-developed.

• Formal models for TEE and its APIs, which can be utilized for a variety
of formal analysis techniques, are lacking.

Motivations

12

Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.

13

Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.

14

Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.

15

Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.

16

Our Contributions

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

- Identify security vulnerabilities in the MQT-TZ implementation.
- Patch them and verify the fix with model checking.

17

• Our target is the standard TEE APIs, provided by Global Platform.

- Many Trusted OSes follow this standard.

- e.g., Samsung TEEgris, Trustonic Kinibi, Qualcomm QTEE, etc.

Our Target TEE APIs

18

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

• We focus on Trusted Storage API and Cryptographic Operations API.

Our Target TEE APIs

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

19

• We focus on Trusted Storage API and Cryptographic Operations API.

Our Target TEE APIs

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

Manges files and crypto keys in trusted storage

20

• We focus on Trusted Storage API and Cryptographic Operations API.

Our Target TEE APIs

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

Manges files and crypto keys in trusted storage Handles cryptographic algorithms

21

• We focus on Trusted Storage API and Cryptographic Operations API.

Our Target TEE APIs

Memory

TEE API

Storage Timer Crypto.

I/O Event Session Calc.

Manges files and keys in trusted storage Handles cryptographic algorithms

• We choose these APIs because:
- They are widely and frequently used in various TEE applications;
- They provide essential functions for TEE’s integrity.

22

Characteristics of the TEE APIs

23

• (1) Many API functions interact with multiple objects, and we need to
consider their concurrent behaviors.

Characteristics of the TEE APIs

24

• (1) Many API functions interact with multiple objects, and we need to
consider their concurrent behaviors.

• E.g., consider a file open function of Trusted Storage API.

Characteristics of the TEE APIs

Trusted
Application

Trusted
Storage

Persistent

Transient

Persistent

1: create

2: delete

3: transform4: recreate

5: return
2: fail

25

• (1) Many API functions interact with multiple objects, and we need to
consider their concurrent behaviors.

• E.g., consider a file open function of Trusted Storage API.

Characteristics of the TEE APIs

Trusted
Application

Trusted
Storage

Persistent

Transient

Persistent

1: create

2: delete

3: transform4: recreate

5: return
2: fail

26

• (2) Some objects have complex internal state transitions.

Characteristics of the TEE APIs

27

• (2) Some objects have complex internal state transitions.

• E.g., A symmetric cipher operation object has complex state transitions.

Characteristics of the TEE APIs

28

• (2) Some objects have complex internal state transitions.

• E.g., A symmetric cipher operation object has complex state transitions.

Characteristics of the TEE APIs

29

• (2) Some objects have complex internal state transitions.

• E.g., A symmetric cipher operation object has complex state transitions.

Characteristics of the TEE APIs

30

• (2) Some objects have complex internal state transitions.

• E.g., A symmetric cipher operation object has complex state transitions.

Characteristics of the TEE APIs

31

Considering these characteristics, we use Maude for formal specification.

• Maude is a language and tool for formally specifying and analyzing
concurrent systems, based on rewriting logic formalism.

What is Maude?

32

• Maude is a language and tool for formally specifying and analyzing
concurrent systems, based on rewriting logic formalism.

- It supports object-oriented specification.

What is Maude?

33

• Maude is a language and tool for formally specifying and analyzing
concurrent systems, based on rewriting logic formalism.

- It supports object-oriented specification.

- It defines concurrent behaviors using rewrite rules.

What is Maude?

34

• Maude is a language and tool for formally specifying and analyzing
concurrent systems, based on rewriting logic formalism.

- It supports object-oriented specification.

- It defines concurrent behaviors using rewrite rules.

What is Maude?

35

We can formally specify TEE APIs considering characteristic 1 and 2.

• Maude is a language and tool for formally specifying and analyzing
concurrent systems, based on rewriting logic formalism.

- It supports object-oriented specification.

- It defines concurrent behaviors using rewrite rules.

• Because of the powerful formalism of Maude, it is widely used in
various formal analysis domains such as:

- defining language semantics,

- inductive theorem proving,

- model checking, etc.

What is Maude?

36

Formal Specification using Maude

37

• In Maude, we declare a class using the syntax:

Formal Specification using Maude

Class name

Attributes and their types

class C | att1 : Ty1 , ..., attn : Tyn

38

• In Maude, we declare class instances using the syntax:

• The behavior of a class is defined using rewrite rules:

Formal Specification using Maude

class C | att1 : Ty1 , ..., attn : Tyn

39

𝐜𝐫𝐥 𝑙𝑎𝑏𝑒𝑙 ∶ 𝑙 ⇒ 𝑟 𝐢𝐟 𝜙

• In Maude, we declare class instances using the syntax:

• The behavior of a class is defined using rewrite rules:

Formal Specification using Maude

class C | att1 : Ty1 , ..., attn : Tyn

40

𝐜𝐫𝐥 𝑙𝑎𝑏𝑒𝑙 ∶ 𝑙 ⇒ 𝑟 𝐢𝐟 𝜙

Pattern

• In Maude, we declare class instances using the syntax:

• The behavior of a class is defined using rewrite rules:

Formal Specification using Maude

class C | att1 : Ty1 , ..., attn : Tyn

41

𝐜𝐫𝐥 𝑙𝑎𝑏𝑒𝑙 ∶ 𝑙 ⇒ 𝑟 𝐢𝐟 𝜙

Pattern Rewrites to

• In Maude, we declare class instances using the syntax:

• The behavior of a class is defined using rewrite rules:

Formal Specification using Maude

class C | att1 : Ty1 , ..., attn : Tyn

42

𝐜𝐫𝐥 𝑙𝑎𝑏𝑒𝑙 ∶ 𝑙 ⇒ 𝑟 𝐢𝐟 𝜙

Pattern Rewrites to

condition

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

Formal Specification using Maude

43

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

Formal Specification using Maude

44

class PersistObj | file-name : String, data-stream : List{Data}

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

45

class PersistObj | file-name : String, data-stream : List{Data}

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

46

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

47

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Message object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

48

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Message object
persistent object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

49

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Message object
persistent object

persistent object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

50

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Message object
persistent object

Message object
persistent object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

51

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Persistent
object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

52

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Read request message

Persistent
object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

53

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK) Pop a top element

Read request message

Persistent
object

• E.g.) In TEE, a file is called a persistent object having:

• (1) a file name; and

• (2) a data stream.

• This object returns its data when receiving a read request message.

Formal Specification using Maude

54

class PersistObj | file-name : String, data-stream : List{Data}

rl [read]:
(msg reqRead from TA to PI)
< PI : PersistObj | file-name : FILE, data-stream : DATA :: STREAM >

=> < PI : PersistObj | file-name : FILE, data-stream : STREAM >
(msg retData[DATA] from PI to TK)

Returns the element

Pop a top element

Read request message

Persistent
object

An example: TEE_CreatePersistentObject

55

• This function creates a new persistent object.

An example: TEE_CreatePersistentObject

56

File

• This function creates a new persistent object.

- Argument 1 : Filename

- Argument 2 : Access flags (e.g., overwrite)

- Argument 3 : Data

- ...

An example: TEE_CreatePersistentObject

57

• This function creates a new persistent object.

- Argument 1 : Filename

- Argument 2 : Access flags (e.g., overwrite)

- Argument 3 : Data

- ...

An example: TEE_CreatePersistentObject

58

It’s a file open function but opens the file to a trusted storage.

• According to the TEE API document, when a file with the same name
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

59

• According to the TEE API document, when a file with the same name
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

60

• According to the TEE API document, when a file with the same name
already exists, the behavior of the function is as follows:

An example: TEE_CreatePersistentObject

61

• According to the TEE API document, when a file with the same name
already exists, the behavior of the function is as follows:

- Overwrite flag given :

Delete the old file and create a new one

An example: TEE_CreatePersistentObject

62

• According to the TEE API document, when a file with the same name
already exists, the behavior of the function is as follows:

- Overwrite flag given :

Delete the old file and create a new one

- Overwrite flag not given :

Return error

An example: TEE_CreatePersistentObject

63

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

64

⋯

• (1) A trusted application (TA) requests a trusted storage to create a file.

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

65

⋯

• (1) A trusted application (TA) requests a trusted storage to create a file.

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

66

⋯

• (1) A trusted application (TA) requests a trusted storage to create a file.

• Trusted application has the following things:

- the status of an API call,

- an identifier of a trusted storage,

- ...

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

67

⋯

• (1) A trusted application (TA) requests a trusted storage to create a file.

• Trusted application has the following things:

- the status of an API call,

- an identifier of a trusted storage,

- ...

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

68

⋯

• (1) A trusted application (TA) requests a trusted storage to create a file.

• Trusted application has the following things:

- the status of an API call,

- an identifier of a trusted storage,

- ...

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

69

⋯
class TA | api-call : CallStatus, storage-id : Oid, ...

• (1) A trusted application (TA) requests a trusted storage to create a file.

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

70

⋯
rl [create-persistent-determine-case]:

< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
 (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .

• (1) A trusted application (TA) requests a trusted storage to create a file.

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

71

⋯
rl [create-persistent-determine-case]:

< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
 (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .

TA

• (1) A trusted application (TA) requests a trusted storage to create a file.

An example: TEE_CreatePersistentObject

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

72

⋯
rl [create-persistent-determine-case]:

< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
 (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .

TA

Make a file creation request message and send it

• (1) A trusted application (TA) requests a trusted storage to create a file.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

73

⋯
rl [create-persistent-determine-case]:

< X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT), storage : SI >
=> < X : TA | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >
 (msg fileCreate[FILE, FLAGS, HI, DATA, OPT] from X to SI) .

TA

Make a file creation request message and send it to its trusted storage

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

74

⋯

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

75

⋯

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

76

⋯

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

• Trusted storage has the following things:

- a list of stored files,

- a counter for object creation,

- ...

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

77

⋯

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

• Trusted storage has the following things:

- a list of stored files,

- a counter for object creation,

- ...

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

78

⋯

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

• Trusted storage has the following things:

- a list of stored files,

- a counter for object creation,

- ...

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

79

⋯

class Storage | files : Set{FileName}, counter : Nat, ...

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

80

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

81

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

Trusted
storage

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

82

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation
request message

Trusted
storage

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

83

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation
request message

Trusted
storage

Determine if overwrite flag is given

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

84

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation
request message

Trusted
storage

Determine if overwrite flag is given
Sends a file deletion request message to the old file

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

85

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation
request message

Trusted
storage

If no overwrite flag is given

An example: TEE_CreatePersistentObject

• (2)-1. The storage deletes the old file if an overwrite flag is given.

• (2)-2. Otherwise, the storage returns a failure message.

Trusted
Application

Trusted
Storage

1: create

2: fail
2: delete

86

⋯
crl [create-persistent-overwrite-check]:

(msg create[METHOD FILE FLAGS HI DATA] from X to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N X] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

A file creation
request message

Trusted
storage

If no overwrite flag is givenSends a failure message

An example: TEE_CreatePersistentObject

• We specify all API functions of the Trusted Storage API and
Cryptographic Operations API.

Formal Specification of TEE APIs

87

• We specify all API functions of the Trusted Storage API and
Cryptographic Operations API.

Formal Specification of TEE APIs

TEE_CreatePersistentObject
TEE_OpenPersistentObject
TEE_RenamePersistentObject
TEE_CloseAndDeletePersistentObject1
TEE_ReadObjectData
TEE_WriteObjectData
…
TEE_CopyObjectAttributes1
TEE_PopulateTransientObject
…

Trusted Storage API (27/27)

88

• We specify all API functions of the Trusted Storage API and
Cryptographic Operations API.

Formal Specification of TEE APIs

TEE_CreatePersistentObject
TEE_OpenPersistentObject
TEE_RenamePersistentObject
TEE_CloseAndDeletePersistentObject1
TEE_ReadObjectData
TEE_WriteObjectData
…
TEE_CopyObjectAttributes1
TEE_PopulateTransientObject
…

Trusted Storage API (27/27)

TEE_AllocateOperation
TEE_ResetOperation
TEE_SetOperationKey
TEE_CopyOperation
TEE_FreeOperation
TEE_DigestUpdate
…
TEE_MACInit
TEE_MACUpdate
…

Crytographic Operations API (30/30)

89

• Our formal model consists of more than 15 objects, and 245 rules.

Formal Specification of TEE APIs

90

• Our formal model consists of more than 15 objects, and 245 rules.

• We write almost 8K LoC for our specification.

Formal Specification of TEE APIs

91

• Our formal model consists of more than 15 objects, and 245 rules.

• We write almost 8K LoC for our specification.

Formal Specification of TEE APIs

92

Case Study

93

Case Study

94

Demonstrate the effectiveness of our formal model by using it
to formally analyze a real-world TEE application.

Goal

Case Study

95

Demonstrate the effectiveness of our formal model by using it
to formally analyze a real-world TEE application.

Goal

• We define the language semantics for TEE applications in Maude.
• We extend our model to run TEE applications using this semantics.

Settings

• As our target TEE application, we choose MQT-TZ [Segarra+20].

Our Target TEE Application

96

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

97

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

98

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

99

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

100

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

101

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

102

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

103

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

104

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

105

Our formal model

• As our target TEE application, we choose MQT-TZ [Segarra+20].

• MQT-TZ is a TEE-based implementation of a publish-subscribe message
transport protocol.

Our Target TEE Application

106

Our formal model

TEE Application

Threat Models

107

• (1) Memory threat

- This threat makes brokers to run out of memory.

Threat Models

108

• (1) Memory threat

- This threat makes brokers to run out of memory.

• (2) Message modification threat

- This threat modifies the sender of a message.

Threat Models

109

• We define various requirements for MQT-TZ and express them as LTL
properties.

Defining Requirements of MQT-TZ

110

• We define various requirements for MQT-TZ and express them as LTL
properties.

Defining Requirements of MQT-TZ

111

Name Description LTL Formula

P1 If no memory error occurs in the broker, subscribers eventually
receive messages.

¬𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵 →
(𝑠𝑒𝑛𝑑. 𝑃 → ♢𝑟𝑒𝑐𝑣. 𝑆)

P2 If the TA panics, subscribers should not receive any messages. (𝑝𝑎𝑛𝑖𝑐. 𝑇𝐴 → ¬𝑟𝑒𝑐𝑣. 𝑆)

P3 If any memory error occurs in the broker, subscribers should not
receive any messages.

(𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵
→ ¬𝑟𝑒𝑐𝑣. 𝑆)

P4 When the TA starts running, it should eventually terminate. (𝑠𝑡𝑎𝑟𝑡. 𝑇𝐴 → 𝑡𝑒𝑟𝑚. 𝑇𝐴)

P5 If subscribers receive messages from publishers, messages sent
from each publisher are in order.

(𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑃(𝑎 ∷ 𝑏 ∷ 𝑐)
→ ♢𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑆(𝑎 ∷ 𝑏 ∷ 𝑐)

P6 The number of tasks handled by the TA cannot exceed five. (¬𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐸𝑥𝑐𝑒𝑒𝑑(5))

• We define various requirements for MQT-TZ and express them as LTL
properties.

Defining Requirements of MQT-TZ

112

Name Description LTL Formula

P1 If no memory error occurs in the broker, subscribers eventually
receive messages.

¬𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵 →
(𝑠𝑒𝑛𝑑. 𝑃 → ♢𝑟𝑒𝑐𝑣. 𝑆)

P2 If the TA panics, subscribers should not receive any messages. (𝑝𝑎𝑛𝑖𝑐. 𝑇𝐴 → ¬𝑟𝑒𝑐𝑣. 𝑆)

P3 If any memory error occurs in the broker, subscribers should not
receive any messages.

(𝑚𝑒𝑚𝐸𝑟𝑟. 𝐵
→ ¬𝑟𝑒𝑐𝑣. 𝑆)

P4 When the TA starts running, it should eventually terminate. (𝑠𝑡𝑎𝑟𝑡. 𝑇𝐴 → 𝑡𝑒𝑟𝑚. 𝑇𝐴)

P5 If subscribers receive messages from publishers, messages sent
from each publisher are in order.

(𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑃(𝑎 ∷ 𝑏 ∷ 𝑐)
→ ♢𝑖𝑛𝑄𝑢𝑒𝑢𝑒. 𝑆(𝑎 ∷ 𝑏 ∷ 𝑐)

P6 The number of tasks handled by the TA cannot exceed five. (¬𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐸𝑥𝑐𝑒𝑒𝑑(5))

• We perform LTL model checking using Maude.

LTL Model Checking of MQT-TZ

113

• We perform LTL model checking using Maude.

• We consider three scenarios.

- NON : no threat

- OOM : memory threat

- MSG : message modification threat

LTL Model Checking of MQT-TZ

114

• We perform LTL model checking using Maude.

• We consider three scenarios.

- NON : no threat

- OOM : memory threat

- MSG : message modification threat

LTL Model Checking of MQT-TZ

115

• We perform LTL model checking using Maude.

• We consider three scenarios.

- NON : no threat

- OOM : memory threat

- MSG : message modification threat

LTL Model Checking of MQT-TZ

116

• We perform LTL model checking using Maude.

• We consider three scenarios.

- NON : no threat

- OOM : memory threat

- MSG : message modification threat

LTL Model Checking of MQT-TZ

117

• We perform LTL model checking using Maude.

• We consider three scenarios.

- NON : no threat

- OOM : memory threat

- MSG : message modification threat

LTL Model Checking of MQT-TZ

118

Maude generates counterexamples for violations

• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations

119

• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations

120

• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations

121

Even if the TA panicked, some subscriber receives a message.

• We analyze the counterexample execution paths, generated by Maude.

Analyzing the Violations

122

Even if the TA panicked, some subscriber receives a message.

If memory error occurred in TA, some subscriber still receives a message.

• The reason is that the broker program cannot distinguish the following
three TA status:

- (1) successful termination,

- (2) panic,

- (3) out-of-memory.

Analyzing the Violations

123

• The reason is that the broker program cannot distinguish the following
three TA status:

- (1) successful termination,

- (2) panic,

- (3) out-of-memory.

Analyzing the Violations

124

Consider as successful termination

• We propose a code-level patch for the broker program to distinguish
two error states from successful termination.

Patching the Bug

125

• We propose a code-level patch for the broker program to distinguish
two error states from successful termination.

Patching the Bug

126

TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin,
mqttz_client *dest, mqttz_times *times)

{ ...
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori);

...
}

• We propose a code-level patch for the broker program to distinguish
two error states from successful termination.

Patching the Bug

127

TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin,
mqttz_client *dest, mqttz_times *times)

{ ...
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori);
if (res == TEE_ERROR_OUT_OF_MEMORY || res == TEE_ERROR_TA_DEAD)
{ discardMsg(ctx, origin, dest); }
...

}

• We propose a code-level patch for the broker program to distinguish
two error states from successful termination.

Patching the Bug

128

TEEC_Result main(struct test_ctx *ctx, mqttz_client *origin,
mqttz_client *dest, mqttz_times *times)

{ ...
res = TEEC_InvokeCommand(&ctx->sess, TA_REENCRYPT, &op, &ori);
if (res == TEE_ERROR_OUT_OF_MEMORY || res == TEE_ERROR_TA_DEAD)
{ discardMsg(ctx, origin, dest); }
...

}

Out-of-memory TA panicSuccessful termination

• After patching, we verify the program again.

Patching the Bug

129

• After patching, we verify the program again.

Patching the Bug

130

• After patching, we verify the program again.

Patching the Bug

We can confirm that the violated properties are satisfied.

131

Summary

132

• We provide a comprehensive formal model for TEE APIs, that can be
used in various formal analysis.

• We specify two widely used TEE API categories, Trusted Storage API
and Cryptographic Operations API.

• We demonstrate the effectiveness of our model through a case study
on formally analyzing a real-world TEE application, MQT-TZ.

